
TuneFuzz: Adaptively Exploring Target Programs
Han Zheng

HexHive, EPFL
Lausanne, Switzerland

han.zheng@epfl.ch

Flavio Toffalini
HexHive, EPFL

Lausanne, Switzerland
flavio.toffalini@epfl.ch

Mathias Payer
HexHive, EPFL

Lausanne, Switzerland
mathias.payer@epfl.ch

ABSTRACT
In this report, we present TuneFuzz, an extension of Fish-
Fuzz that introduces two key improvements: an optimiza-
tion that targets different sets of code locations (allowing
user-selection of targets) and removes the need for Link Time
Optimization. Subsequently, TuneFuzz achieves the 2nd place
in SBFT24.

KEYWORDS
fuzzing, sanitizer, input prioritization

ACM Reference Format:
Han Zheng, Flavio Toffalini, and Mathias Payer. 2024. TuneFuzz:
Adaptively Exploring Target Programs. In 2024 ACM/IEEE In-
ternational Workshop on Search-Based and Fuzz Testing (SBFT
’24), April 14, 2024, Lisbon, Portugal. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3643659.3648564

1 INTRODUCTION
Fuzzing [2, 9, 12] is an automated software testing technique,
which has proven its efficiency in bug hunting [8] and draws
interest from both academia and industry. Traditional Grey-
box Fuzzers [5–7] treat all code locations equally, trying to
maximize the code coverage by exploring the whole program
space. Directed Greybox Fuzzers [1, 3], however, narrow the
search to the predefined target sites and focus on exploiting
bugs in the given locations.

FishFuzz [13] is a Sanitizer-Guided Greybox Fuzzer, which
tries to find a balance between exploration and exploitation
by introducing a new input prioritization mechanism. In
the evaluation, FishFuzz notably boosts the coverage and
finds up to 2.8x bugs compared to the baseline. However,
the current FishFuzz prototype requires Linking Time Opti-
mization (LTO) [4], which swaps the order of the coverage
pass and sanitizer pass, thereby introducing superfluous in-
strumentations and reducing the execution speed. On the
other hand, LTO mode introduces compatibility issues on
some FuzzBench targets [10]. Concurrently, FishFuzz relies

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SBFT ’24, April 14, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 979-8-4007-0562-5/24/04
https://doi.org/10.1145/3643659.3648564

Program

compilation
+

sanitizers

Instrumented
Program

Program preparation

Fuzz Loop

Queue

Fork Server

Program
Instances

isFavor?

Execute &
Monitor

Targets Extraction Targets Ranking

Distance Metric Static Analysis

Update
targets
ranking

Select
useful
seeds Save

interesting
seeds

Cull Queue

+

①

: FishFuzz

②

③

④

⑤

⑥
⑦

⑧

: TuneFuzz

Figure 1: Overview of TuneFuzz workflow, The green
boxs indicate the TuneFuzz modifications compared
to FishFuzz.

on sanitizer instrumentation for guidance [11], which limits
its application to non-sanitized targets.

In this report, we propose TuneFuzz as an FishFuzz
extension to address the above challenges. Specifically, Tune-
Fuzz introduces static analysis passes as an LLVM patch and
targets all code regions. Moreover, TuneFuzz introduces ad-
ditional engineering optimizations in queue culling to enhance
performance.

To better demonstrate TuneFuzz’s capability in complex
scenarios, we evaluate TuneFuzz across four real-world tar-
gets. Overall, TuneFuzz boosts coverage up to 79.62% over
the baseline AFL++. In the final SBFT24 fuzzing competi-
tion, TuneFuzz ranks 2nd.

2 DESIGN AND IMPLEMENTATION
Figure 1 depicts the overall workflow. TuneFuzz inherits
the overall design of FishFuzz and primarily optimizes the
Preprocessing (3) and Queue Culling modules (6).

Static Analysis FishFuzz requires Linking Time Op-
timization to run the analysis pass after the sanitizer pass.
To mitigate the LTO requirement, TuneFuzz patches the
LLVM source code to enforce the correct order of the anal-
ysis passes. Consequently, TuneFuzz allows the FishFuzz
analysis without modifying the compile process.

Target Extraction One of the FishFuzz core contribu-
tions involves scaling the target set to hundred thousands of
targets. This leaves the potential for TuneFuzz to target all
code locations. Compared to FishFuzz, which targets upon
sanitizer labels, TuneFuzz allows the user to decouple the
sanitizer, boosting the execution speed in ‘classic’ undirected
greybox fuzzing mode while still benefiting from FishFuzz’s
fast exploration.

Cull Queue While vanilla FishFuzz emphasizes the ex-
ploitation capability, the FuzzBench competition prioritizes

https://doi.org/10.1145/3643659.3648564
https://doi.org/10.1145/3643659.3648564

SBFT ’24, April 14, 2024, Lisbon, Portugal Zheng et al.

0 5 10 15 20
fuzzing time (h)

15000

20000

25000

30000

35000

40000

45000

50000

co
ve

ra
ge

 g
ro

wt
h

(a
flp

p
ed

ge
s)

aflpp - best
aflpp - worst
aflpp - avg
tunefuzz - best
tunefuzz - worst
tunefuzz - avg

(a) FFmpeg

0 5 10 15 20
fuzzing time (h)

10000

20000

30000

40000

50000

60000

co
ve

ra
ge

 g
ro

wt
h

(a
flp

p
ed

ge
s)

aflpp - best
aflpp - worst
aflpp - avg
tunefuzz - best
tunefuzz - worst
tunefuzz - avg

(b) WireShark

0 5 10 15 20
fuzzing time (h)

20000

30000

40000

50000

60000

co
ve

ra
ge

 g
ro

wt
h

(a
flp

p
ed

ge
s)

aflpp - best
aflpp - worst
aflpp - avg
tunefuzz - best
tunefuzz - worst
tunefuzz - avg

(c) V8

0 5 10 15 20
fuzzing time (h)

24000

26000

28000

30000

32000

co
ve

ra
ge

 g
ro

wt
h

(a
flp

p
ed

ge
s)

aflpp - best
aflpp - worst
aflpp - avg
tunefuzz - best
tunefuzz - worst
tunefuzz - avg

(d) PDFium

Figure 2: Coverage of TuneFuzz and AFL++ in 10 round’s 24h campaign.

exploration more. TuneFuzz, inspired by the FuzzBench re-
sults, fine-tuned each stage’s hyper-parameter to optimize
the exploration strategy.

3 EVALUATION
Before the SBFT24 competition, we evaluate TuneFuzz
against vanilla AFL++ [5] on four complex real-world appli-
cations. We choose Wireshark, FFmpeg, Chromium V8, and
Chromium Pdfium as benchmarks. To ensure a fair compari-
son, we replay the results on AFL++ instrumented binary
to avoid edge collision. Our setup follows the same config-
uration as FuzzBench (e.g., havoc-only, no sanitizer) and
mount the disk as tmpfs to allow in-memory fuzzing. We
release the full setup and 10 rounds’ corpus for replication
https://github.com/kdsjZh/FishFuzz-Seed-eval.

Figure 2 demonstrate that TuneFuzz significantly out-
performs AFL++. For the Chromium component V8 and
PDFium, we observe a notable boost starting from 10h, Tune-
Fuzz covers 79.62% and 37.94% more edges compare with
AFL++ (we exclude the edges covered by the initial corpus).
In WireShark and FFmpeg, TuneFuzz enhances AFL++ as
well, TuneFuzz’s average edge finding in Wireshark is even
better than AFL++’s best coverage

CONCLUSION
TuneFuzz, an extension of FishFuzz, has been success-
fully integrated into FuzzBench. Our evaluation demonstrates
TuneFuzz’ exploration capability by notably boosting over
AFL++. In SBFT’24 competition, TuneFuzz ranks the 2nd
place. It is openly available at https://github.com/HexHive/
FishFuzz.

REFERENCES
[1] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Ab-

hik Roychoudhury. 2017. Directed greybox fuzzing. In Proceedings
of the 2017 ACM SIGSAC conference on computer and commu-
nications security. 2329–2344.

[2] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.
Coverage-based greybox fuzzing as markov chain. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. 1032–1043.

[3] Hongxu Chen, Yinxing Xue, Yuekang Li, Bihuan Chen, Xiaofei
Xie, Xiuheng Wu, and Yang Liu. 2018. Hawkeye: Towards a
desired directed grey-box fuzzer. In Proceedings of the 2018
ACM SIGSAC conference on computer and communications
security. 2095–2108.

[4] Mary F Fernandez. 1995. Simple and effective link-time opti-
mization of Modula-3 programs. In Proceedings of the ACM
SIGPLAN 1995 conference on Programming language design
and implementation. 103–115.

[5] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
2020. {AFL++}: Combining incremental steps of fuzzing research.
In 14th USENIX Workshop on Offensive Technologies (WOOT
20).

[6] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun
Qin, Dong Wu, and Zuoning Chen. 2020. {GREYONE}: Data flow
sensitive fuzzing. In 29th USENIX security symposium (USENIX
Security 20). 2577–2594.

[7] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li,
Zhongyu Pei, and Zuoning Chen. 2018. Collafl: Path sensitive
fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 679–696.

[8] google. 2023. ossfuzz bugs. https://security.googleblog.com/2023/
02/taking-next-step-oss-fuzz-in-2023.html.

[9] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted
mutation strategy for increasing greybox fuzz testing coverage. In
Proceedings of the 33rd ACM/IEEE international conference
on automated software engineering. 475–485.

[10] Jonathan Metzman, László Szekeres, Laurent Simon, Read
Sprabery, and Abhishek Arya. 2021. Fuzzbench: an open fuzzer
benchmarking platform and service. In Proceedings of the 29th
ACM joint meeting on European software engineering confer-
ence and symposium on the foundations of software engineering.
1393–1403.

[11] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. 2012. {AddressSanitizer}: A fast address
sanity checker. In 2012 USENIX annual technical conference
(USENIX ATC 12). 309–318.

[12] Michal Zalewski. 2013. american fuzzy lop. https://lcamtuf.
coredump.cx/afl/.

[13] Han Zheng, Jiayuan Zhang, Yuhang Huang, Zezhong Ren, He
Wang, Chunjie Cao, Yuqing Zhang, Flavio Toffalini, and Mathias
Payer. 2023. {FISHFUZZ}: Catch Deeper Bugs by Throwing
Larger Nets. In 32nd USENIX Security Symposium (USENIX
Security 23). 1343–1360.

https://github.com/kdsjZh/FishFuzz-Seed-eval
https://github.com/HexHive/FishFuzz
https://github.com/HexHive/FishFuzz
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://security.googleblog.com/2023/02/taking-next-step-oss-fuzz-in-2023.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 Design And Implementation
	3 Evaluation
	References

