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ABSTRACT
In this report, we present TuneFuzz, an extension of Fish-
Fuzz that introduces two key improvements: an optimiza-
tion that targets different sets of code locations (allowing
user-selection of targets) and removes the need for Link Time
Optimization. Subsequently, TuneFuzz achieves the 2nd place
in SBFT24.
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1 INTRODUCTION
Fuzzing [2, 9, 12] is an automated software testing technique,
which has proven its efficiency in bug hunting [8] and draws
interest from both academia and industry. Traditional Grey-
box Fuzzers [5–7] treat all code locations equally, trying to
maximize the code coverage by exploring the whole program
space. Directed Greybox Fuzzers [1, 3], however, narrow the
search to the predefined target sites and focus on exploiting
bugs in the given locations.

FishFuzz [13] is a Sanitizer-Guided Greybox Fuzzer, which
tries to find a balance between exploration and exploitation
by introducing a new input prioritization mechanism. In
the evaluation, FishFuzz notably boosts the coverage and
finds up to 2.8x bugs compared to the baseline. However,
the current FishFuzz prototype requires Linking Time Opti-
mization (LTO) [4], which swaps the order of the coverage
pass and sanitizer pass, thereby introducing superfluous in-
strumentations and reducing the execution speed. On the
other hand, LTO mode introduces compatibility issues on
some FuzzBench targets [10]. Concurrently, FishFuzz relies
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Figure 1: Overview of TuneFuzz workflow, The green
boxs indicate the TuneFuzz modifications compared
to FishFuzz.

on sanitizer instrumentation for guidance [11], which limits
its application to non-sanitized targets.

In this report, we propose TuneFuzz as an FishFuzz
extension to address the above challenges. Specifically, Tune-
Fuzz introduces static analysis passes as an LLVM patch and
targets all code regions. Moreover, TuneFuzz introduces ad-
ditional engineering optimizations in queue culling to enhance
performance.

To better demonstrate TuneFuzz’s capability in complex
scenarios, we evaluate TuneFuzz across four real-world tar-
gets. Overall, TuneFuzz boosts coverage up to 79.62% over
the baseline AFL++. In the final SBFT24 fuzzing competi-
tion, TuneFuzz ranks 2nd.

2 DESIGN AND IMPLEMENTATION
Figure 1 depicts the overall workflow. TuneFuzz inherits
the overall design of FishFuzz and primarily optimizes the
Preprocessing ( 3 ) and Queue Culling modules ( 6 ).

Static Analysis FishFuzz requires Linking Time Op-
timization to run the analysis pass after the sanitizer pass.
To mitigate the LTO requirement, TuneFuzz patches the
LLVM source code to enforce the correct order of the anal-
ysis passes. Consequently, TuneFuzz allows the FishFuzz
analysis without modifying the compile process.

Target Extraction One of the FishFuzz core contribu-
tions involves scaling the target set to hundred thousands of
targets. This leaves the potential for TuneFuzz to target all
code locations. Compared to FishFuzz, which targets upon
sanitizer labels, TuneFuzz allows the user to decouple the
sanitizer, boosting the execution speed in ‘classic’ undirected
greybox fuzzing mode while still benefiting from FishFuzz’s
fast exploration.

Cull Queue While vanilla FishFuzz emphasizes the ex-
ploitation capability, the FuzzBench competition prioritizes
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(d) PDFium

Figure 2: Coverage of TuneFuzz and AFL++ in 10 round’s 24h campaign.

exploration more. TuneFuzz, inspired by the FuzzBench re-
sults, fine-tuned each stage’s hyper-parameter to optimize
the exploration strategy.

3 EVALUATION
Before the SBFT24 competition, we evaluate TuneFuzz
against vanilla AFL++ [5] on four complex real-world appli-
cations. We choose Wireshark, FFmpeg, Chromium V8, and
Chromium Pdfium as benchmarks. To ensure a fair compari-
son, we replay the results on AFL++ instrumented binary
to avoid edge collision. Our setup follows the same config-
uration as FuzzBench (e.g., havoc-only, no sanitizer) and
mount the disk as tmpfs to allow in-memory fuzzing. We
release the full setup and 10 rounds’ corpus for replication
https://github.com/kdsjZh/FishFuzz-Seed-eval.

Figure 2 demonstrate that TuneFuzz significantly out-
performs AFL++. For the Chromium component V8 and
PDFium, we observe a notable boost starting from 10h, Tune-
Fuzz covers 79.62% and 37.94% more edges compare with
AFL++ (we exclude the edges covered by the initial corpus).
In WireShark and FFmpeg, TuneFuzz enhances AFL++ as
well, TuneFuzz’s average edge finding in Wireshark is even
better than AFL++’s best coverage

CONCLUSION
TuneFuzz, an extension of FishFuzz, has been success-
fully integrated into FuzzBench. Our evaluation demonstrates
TuneFuzz’ exploration capability by notably boosting over
AFL++. In SBFT’24 competition, TuneFuzz ranks the 2nd
place. It is openly available at https://github.com/HexHive/
FishFuzz.
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