
MendelFuzz: the Return of the 
Deterministic Stage

Han Zheng, Flavio Toffalini, Marcel Böhme, Mathias Payer



Introduction: Fuzzing Workflow

2

Seed
Selection

Seed Queue

Bug!Add to the Queue

Executor

Mutation Execs



Introduction: Fuzzing Workflow

3

Seed
Selection

Seed Queue

Bug!Add to the Queue

Executor

Mutation Execs



Introduction: Deterministic Stage Takes Much Longer

Bit/Byte Flip

Arith Inc/Dec

Interesting Val

Directory Val

Deterministic Stage

Up to Millions 
execution per seed

Mutator 1 Mutator 2 Mutator …

Less than 128K 
execution per seed

Mutator 1 Mutator 2 Mutator …

Mutator 1 Mutator 2 Mutator …

Mutator 1 Mutator 2 Mutator …

Havoc Stage



Introduction: SoTAs Disable the Deterministic Stage

…, skipping the deterministic stage caused AFL to perform statistically 
significantly better than AFL with the deterministic stage – FuzzBench

Version 3.00c release:
deterministic fuzzing is now disabled by default

No deterministic stage implementation

AFL++

LibFuzzer



Motivation: Havoc is NOT all we need

benchmark

AFL AFL++ Honggfuzz

det havoc det havoc det havoc

systemd_fuzz-link-parser 1244 640 1256 640 1283 639

woff2-2016-05-06 2306 1859 2316 1872 2318 1893

re2-2014-12-09 4152 3527 4121 3517 4032 3505

jsoncpp_jsoncpp_fuzzer 665 638 665 638 626 640

[1] https://www.fuzzbench.com/reports/paper/AFL%20Deterministic%20Experiment/index.html
[2] https://www.fuzzbench.com/reports/paper/Main%20Experiment/index.html

In 4 / 23 targets, fuzzers with deterministic stage perform better[1,2]

Fuzzer’s edge coverage w/ and w/o deterministic stage.



Study: Effectiveness of Deterministic Stage

Leveraging MAGMA, we assess the following:

● Study 1: Contribution of the deterministic / havoc stages

● Study 2: Contribution of individual seeds to coverage

● Study 3: Contribution of individual bytes to coverage



Study 1: Contribution of the Deterministic / Havoc Stages

We run 23 programs in MAGMA using 
AFL++ with both stages enabled for 24h.

Each point represents a program, 
highlighting the discovery from both the 
deterministic and havoc stage.

Deterministic stage consumes long time, but may bring new coverage



Study 1: Contribution of the Deterministic / Havoc Stages

We run 23 programs in MAGMA using 
AFL++ with both stages enabled for 24h.

Each point represents a program, 
highlighting the discovery from both the 
deterministic and havoc stage.

Deterministic stage takes time, but may bring new coverage



Study 2 / 3: Contribution of Seeds / Bytes to Coverage

We study the contribution of each individual bytes / seeds by collect the 
paths discovery of each bytes / seeds.

Study 2: 20% of the seeds 
contribute to 83% of path discovery

Study 3: 0.5% of the input bytes 
contribute to 84% of path discovery

83% path 
discovery

20% seeds

84% path 
discovery

0.5% input bytes



Study 2 / 3: Contribution of Seeds / Bytes to Coverage

We study the contribution of each individual bytes / seeds by collect the 
paths discovery of each bytes / seeds.

Study 2: 20% of the seeds 
contribute to 83% of path discovery

Study 3: 0.5% of the input bytes 
contribute to 84% of path discovery

83% path 
discovery

20% seeds

84% path 
discovery

0.5% input bytes

Small fraction of bytes / seeds contribute to most new path findings



Design of MendelFuzz

Based on our observations, we introduce Deterministic Fuzz Map and 
Critical Bytes to reduce number of bytes and seeds being deterministically 
fuzzed, finally implement our prototype MendelFuzz.

Arith Inc/Dec

MendelFuzz Module

Seed Det. Fuzz Map

Havoc StageHavoc Stage

Inf. / Critical Bytes

Critical 
seeds

Critical 
Bytes 

Interest Val

Bit/Byte Flip

Directory Val

Mutators from Deterministic Stage



Design: Deterministic Fuzz Map

Exec TraceExecutor

update 
map

Det. Fuzz Map

+

undet_bits

if undet_bit > 
threshold

Seed

① ②

③

MendelFuzz ① run each seed for its Execution Trace, then ② diff between 
Det. Fuzz Map and current Exection Trace to get undet_bits. Finally, ③ if 
undet_bits is bigger than threshold, we fuzz current Seed deterministically. 



Design: Deterministic Fuzz Map

Exec TraceExecutor

update 
map

Det. Fuzz Map

+

undet_bits

if undet_bit > 
threshold

Seed

① ②

③

Det. Fuzz Map reduce the number of seeds for deterministic stage



Design: Inf. / Critical Bytes

Seed Inference stage:
Binary Search by Flipping

Critical Bytes Stage:
Flipping each byte

MendelFuzz rapidly scan bytes that does not contribute by binary searching, 
then flipping remaining bytes one by one, finally find the critical bytes and 
goes through whole deterministic stage.



Design: Inf. / Critical Bytes

Seed Inference stage:
Binary Search by Flipping

Critical Bytes Stage:
Flipping each byte

Inference / Critical Bytes reduce the # bytes for deterministic stage



Evaluation: MendelFuzz Outperforms SoTA in Coverage

MendelFuzz outperform state-of-the-art (w/ and w/o deterministic stage) in 
coverage using MAGMA benchmark 



Evaluation: MendelFuzz Outperforms SoTA in Bug Finding

MendelFuzz outperform state-of-the-art (w/ and w/o deterministic stage) in 
unique bug discovery using MAGMA benchmark.



Evaluation: MendelFuzz Improve Deterministic Efficiency

We redo the study on MendelFuzz and notice that MendelFuzz’s new 
deterministic stage has notably higher efficiency compared to havoc stage



MendelFuzz became the 
default mode in AFL++!

Deterministic stage is 
beneficial but needs tuning.

Most deterministic 
mutations are redundant.

MendelFuzz improves 
coverage and bug finding.


